MONITORING OF DAIRY FARMS TO ASSESS THE POTENTIAL LEVEL OF POLLUTION OF ANIMAL FEED AND ANIMAL PRODUCTION

Mădălina MATEI, Ioan Mircea POP

Iasi University of Life Sciences "Ion Ionescu de la Brad", 3 Mihail Sadoveanu Alley, Iasi, Romania

Corresponding author email: matei.madalina55@yahoo.com

Abstract

The over pollution in recent years has meant that the relationship between animal husbandry and the environment to be approached in the light of a sustainable vision, focused on animal welfare and ensuring the safety of feed and animal production. Given the influence of pollutants on the environment, this paper aims to outline the relationship between animals and environmental pollution, for assessing the potential level of pollution of feed and animal production. Thus, by correlating with the data from the literature, for three dairy farms, located in different geographical areas, was assessed, by observation and questionnaires, the specificity of activities in relation to monitoring feed and milk pollution. Following the monitoring and application of the evaluation questionnaire, the particularities of each farm and also the specifics of feed within them were highlighted, obtaining important information which allowed the assessment of the relationship between environment and animal husbandry, all of this for evaluating the potential level of pollution: S - low; M - medium; R - high.

Key words: animal production, environment, feed, pollutants.

INTRODUCTION

The current situation regarding the level of global pollution has emphasized more than ever the interest for the environment, for human health and also for animal welfare. Despite numerous global measures to reduce pollution, harmful emissions released into the environment continue to cause important damages to soil, crops, animals or people (EEA, 2017).

Raising animals according rational to principles, in optimal and effective conditions, as well as the level of animal productivity, highlights particularly the influence of feed in their development (Mitchell, 2007). However, the process of rational animal husbandry involves a combination of some complex actions, focused on the growth and on the development of animals as a result of ensuring a nutritionally balanced diet and on ensuring the safety of feed and maintaining a harmonious relationship between the animals and the environment, which needs to be kept balanced and healthy.

As for the other trophic elements, the environmental pollutants can be harmful for the feed and dangerous for the animal body and also for the animal production. Despite many efforts to reduce pollution, however, pollutants remain dynamic compounds in the environment and can be a real threat to all the elements of the environment, forming a continuous cycle of contamination, from the soil, to vegetal products (animal feed), to animals and their productions and to human body (Nica et al., 2012; Manciulea & Dumitrescu, 2016).

In relation to the environment, pollutants can have important negative effects on crops (inhibiting the development of plants), on animals (metabolic disorders, decreased productivity, qualitative degradation of animal production) (Wielsoe et al., 2017), while on humans, pollutants can have a strong toxicity (Desiato et al., 2014).

In the production chain, the vegetal products used as feed may be exposed to contamination as a result of the absorption of harmful compounds from the soil or as a consequence of various human activities, such as industrial production, transport or agricultural activities (Rychen et al., 2008; Ukaogo et al., 2020). In terms of of animal production, the contamination may be a consequence of consumption of contaminated feed (EFSA, 2005; Rychen et al., 2008; Tao et al., 2009) and of metabolic transfer of pollutants stored in the animal body to the production obtained (Aytenfsu et al., 2016).

In the literature, different proportions of pollutants have been identified by studies, both in vegetal products used as feed (Albu et al., 2007; Dai et al., 2016; Piskorska-Pliszczynska et al., 2017; Tahir et al., 2017; Bedi et al., 2018; Miclean et al., 2019), as well as in the animal production obtained (Ahmadkhaniha et al., 2017; Chen et al., 2017; Lapole et al., 2017; Marin et al., 2020).

For these reasons, the purpose of this paper is to monitor the activities and the organization of feed bases in some dairy farms, in relation to environmental pollution, in order to assess the potential level of pollution of animal feed and animal production obtained (milk), necessary for a future quantification of the potentially pollutants found.

MATERIALS AND METHODS

According the specificity of the study and its associated purpose, the assessment of the potential level of pollution of feed and milk was carried out by monitoring, during 2021, three dairy farms (A, B, C), of different sizes (between 40-390 animals), selected depending on the level of pollution expected in their geographical area: A - mountain area; B - rural area; C - urban area (Figure 1).

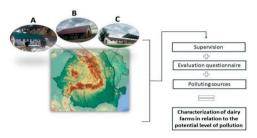


Figure 1. Farm monitoring stages

The characterization of the farms and the identification of the most relevant aspects in terms of production activity and ensuring the fodder base, in relation to monitoring feed pollution and animal production pollution (Table 1), was achieved through a combination of three actions which included:

• direct supervision and observation of the specific activities carried out on the farm;

	Farm monitoring	Relevant information obtained			
The specifics of the farm and	Geographical location (type of settlement*, geographical coordinates, climate)	Correlation between geographical location and the climatic conditions (temperature, wind direction)			
	Polluting activities in the vicinity of the farm	Identification of the main sources of pollution			
livestock	Herds, breeds and daily milk production	Assessment contaminated milk production			
IIVESIOCK	Raising system; type of animal shelter; the milking operation	Assessment of direct exposure to pollution and of the possibilities of accidental contamination			
	Types of feed and structure of ration	Identification of the administered feed			
	Free grazing	Assessment of direct exposure to pollution			
Specific	Number of meals administered	Frequency of possible contamination			
alimentation	Feed administration	Assessment of the possibilities of accidental contamination			
	Adaptation of the ration according to the	Correlation of physiological status with the action			
	physiological status of the animals	mechanisms of pollutants			
	Feed origin (own production)	Assessment of pollutant traceability			
	Quality analysis of feeds	Characteristics of feeds			
The feed base	Harvesting, processing	Assessment of the possibilities of accidental contamination			
	Crops: applied treatments and rotation	Possible contamination in terms of used fertilizers			
	Feed storage	Assessment of direct exposure to pollution			
Water	Unconventional water sources	Assessment of external pollution sources			
Other information	Animal and shelter care / Substances used	Assessment of the possibilities of accidental contamination			

Table 1. Farm monitoring questionnaire

*rural / urban

- taking specific information on the activity of the farm, the feed base and the specifics of the feed using evaluation questionnaires developed in accordance with the data found in the literature;
- identification of pollution sources in the vicinity of farms and correlation of information found with data from the literature.

RESULTS AND DISCUSSIONS

Following the monitoring and application of the evaluation questionnaire, the particularities of each farm studied were highlighted, as well as the specificity of the animal feed within them (Table 2). Were obtained valuable information to assess the level of potential pollution of feed

and animal production and for the classification of the three farms by pollution levels.

The information about the breeding system of animals and also the organization of the activity of the farms highlighted in general important differences between the three farms analyzed, especially in terms of the complexity of the activities developed in the farm. The differences highlighted focused on the characterization of farm A as having a lower pollution potential because, compared to farms B and C, where animal husbandry is carried out at an intensive system, in farm A a semiintensive breeding and maintenance system was highlighted, which showed that it has the lowest operating capacity and the lowest degree of technology, therefore lower pollution risk.

Table 2. Information obtained by assessing the specificity and organization of the feed base in the monitored farms

	Farms							
	А		В		С			
Geographical location	Mountain* area		Rural* are	ea	Urban* area			
(type of settlement*,	47	′°34′N - 25°	19'E	47.2134° N - 27.5066° E		47°09′11″N -	27°39′41″E	
geographical coordinates, climate)	temperate, baltic and east- continental influences wind direction - variables			temperate - continental wind direction: NW – SE humidity: 63-84%		temperate - continental wind direction: WNW humidity: 60-81%		
Polluting activities in the vicinity of the farm / Generated pollutants		Mobile sources: air pollution		Stationary sources: chemical and steel industry Mobile and surface sources: road and air transport/ POPs				
pondunts	Agricultural activities: chemical treatments applied					ied to crops / OCI	ed to crops / OCP	
	40			55		390		
Herds, breeds and daily milk production	Brown Swiss; Romanian Black Pied			Fleckvieh		Holstein Friesian; German Black Pied		
	12 L / day			20 L / day		25 L / day		
	Stall-related maintenance				nance in closed shelter			
Raising system; type of animal shelter; the milking operation	in closed shelter; Pasture - free maintenance in closed shelter Milking system: mechanical, individual		Milking system: Mechanical, 8 seats /2 rows		Milking system: Mechanical, 32 seats /2 rows			
	Туре	of feed	% of ration	Type of feed	% of ration	Type of feed	% of ration	
T C C C C C	Cold	Natural hay	50	Corn silage	56	Corn silage Alfalfa silage	45.45 10.9	
Types of feed and	season ration Corn silage	G		. 10. 10. 1	22.4	Alfalfa hay	5.45	
structure of administered ration		50	Alfalfa hay	22.4	Brewers grain	18.18		
administered ration			Corn grain	11.20	Corn grain	6.35		
	Warm season ration	100	Soybean meal	8.40	Triticale grains	4.54		
					Soybean meal	7.26		
		pastures		Supplements	2	Supplements	1.87	
Free grazing	In warm season			Not		Not		
Number of meals	2			2		2		
Feed administration	Manually			Technological trailer		Technological trailer		

	Farms				
	А	В	С		
Adaptation of the ration according to the physiological status of the animals	Yes - Gestation - elimination of CS	Yes - Gestation - elimination of CS - reduction to ½ of the proportion of concentrates	Yes - Ration administered on productive levels (preparation, lactation/parturition, breast rest) - changing the proportions of concentrates and silage		
Feed origin (own production)	8		71%		
Quality analysis of feed	To third parties	Own laboratory	Own laboratory		
	May - August	May - October	May - October		
Harvesting, processing	Manually + Mechanized	Mechanized	Mechanized		
Crops: applied treatments and rotation	3-11 ha 700-1100 m altitude Natural fertilizer Monoculture	8-25 ha Monoculture ** at 4 years – alfalfa Fertilization: N;S,P/ Crop protection – herbicides	20-100 ha Monoculture ** at 4 years – alfalfa Fertilization: N; P, Cu, Mn, Zn/ Crop protection – herbicides, pesticides, fungicides, insecticides		
Feed storage	Type of storage (closed wood storage type and open cell storage type)	Type of storage (open type warehouses, open cell sto type, closed type deposits)			
Unconventional water sources	Warm season (grazing)	Not	Not		
Animal and shelter care / Substances used	Current sanitation actions	Current sanitation actions: Milking parlors: substances based on C ₃ H ₆ O ₃ , CH ₃ COOH, C ₂ H ₄ O ₃ , H ₂ O ₂ , NaOH, KOH, NaClO Animals: substances based on C ₃ H ₆ O ₃			

Table 2. Information obtained by assessing the specificity and organization of the feed base in the monitored farms (continuation)

**crop rotation for alfalfa.

In the literature, Aytenfsu et al. (2016) mentioned the importance of the breeding system for assessing the possibility of exogenous contamination of feed and milk, therefore, highlighting the system of breeding and maintenance of animals in relation to the study of pollutants, found its applicability for assessing the possibility of accidental contamination of feed and animal production, in the shelter area, in the food storage area or during transport.

The indications regarding the geographical area of each farm, correlated with the environmental conditions in the targeted area (temperature, wind direction) highlighted the position of farm B and of farm C on the dominant wind direction, which can be an additional way of contamination with pollutants generated from neighborhood sources.

The evaluation of the feed base of each farm showed that all three farms have a feed base provided mainly from their own vegetable production, which, in the context of the study, highlights the possibility of a more rigorous control of feed production and allows further study of the traceability of pollutants.

At the same time, the evaluation of the farms showed that the complexity of the feed bases of the three farms analyzed and the specificity of the animal feed (Figure 2) changed in proportion to the intensification of the farming system applied. In the analyzed context, for farm A a less developed feed base was highlighted, with seasonal ration and the majority of feed obtained on its own, which, in the context of the study, shows that the risk of contamination within it is lower compared to other two farms analyzed (B and C). The diversification of feed bases, specific to farm B (rural area) and farm C (urban area), as well as the predominant mechanization of operations, bring to the fore the possibility of a higher level of pollution than in the case of farm A (rural area, mountain); these details are also relevant for the study of the traceability of pollutants, because, within the same farms (B; C), a higher proportion of feed is obtained from external sources, thus being more difficult to assess in terms of monitoring pollutants.

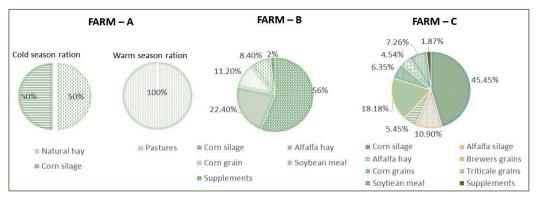


Figure 2. Type of feed and proportion of ration

Particularly important in determining the incidence of feed and milk pollution, the identification of the main sources of pollution for all the farms analyzed allowed the monitoring of certain types of pollutants whose presence is predominant, in accordance with the identified issues in Table 3. The forms of pollution found has included stationary sources, such as positioning in a former mining area, as

is the case of farm A, important, given the persistence of some of the pollutants in the environment; mobile sources such as transport or industrial activities, common to the farm B and C, but also various agricultural activities with potential pollutants (application of potentially polluting substances), especially for the farms B and C.

FARM			А	В	С		
Location and expected level of pollution			Mountain	Rural	Urban	GENERATED	
			47°34′N,	47.21° N,	47°09′N,	POLLUTANTS	
			25°19′E	27.50° E	27°39′E	TOLLOTANIS	
PC	LLUTION SOURCES	5		-			
	Waste combustion				۲	PCB, HCB, PCDD/F, PAH, Cd, Cr, Cu, Hg, Zn	
Stationary sources	Chemical and steel in			۲	As, Cd, Cr, Cu, Fe, Mo, Ni, Pb		
	Mining activity	0			Cd, Cu, Fe, Hg, Mn, Ni, Pb, Zn		
Mobile and	Road transport (car a wire)		۲	۲	As, Cd, Co, Mn, Ni, Pb, Zn		
surface	Airline (landing-take			۲	Cd, Mn, Ni, PCDD/F		
sources	Construction industry			۲	Cd, HCB, Pb, PCB		
	Wastewater treatment			۲	Cd, Cu, Fe		
	Organic fertilizers / 0	\odot	۲	۲	Cd, Cr, Cu, Fe, Hg, Mn, Mo,Ni, Pb, Zn		
Agricultural activities	Treatments applied to crops	Mineral fertilizers		۲	۲	Cd, Cu, Mo, Pb, Zn	
		Pesticides			۲	Cu, Hg, OCP, Pb, Zn	
CONT	CONTAMINATION FACTORS			-			
Free grazing			0				
Unconventional sources of water			0			1	
Fedd from thir	d parties		۲	۲	1 -		
Chemicals for the care of animale, shelters and facilities				۲	۲		

Table 3. Sources of pollution identified in the vicinity of the farms

HCB=hexachlorobenzene; *OCP*=organochlorine pesticides; *PAH*=polycyclic aromatic hydrocarbons; *PCDD/F*=polychlorinated dibenzo-p-dioxins (*D*)/furans (*F*); *PCB*=polychlorinated biphenylene.

Consistent with the issues highlighted by Ukaogo et al. (2020), the sources mentioned in Table 3 reported as main potential pollutants generated the persistent organic compounds and heavy metals, which subscribes to other research in the same field (Shafy & Mansour, 2016; Kulkarni et al., 2019; Senthikumar & Naven Kumar, 2020).

	Vegetal product	Type of treatment	Commercial formula	Quantity/ha	Active substance	
В	Alfalfa	Weed control (herbicide)	Pulsar 40 1.1 L		40 g/L Imazamox	
	Corn for silage	Fertilization	Sulfammo–25– MPPA–1	170 kg	25% N (18 % N amoniacal; 7% N nitric); 31% SO ₃ ; 2% MgO	
		Weed control (herbicide)	Principal Plus	440 g	9.2% Nicosulfuron; 55% Dicamba; 2.3% Rimsulfuron	
	Corn for grain	· · · · · · · · · · · · · · · · · · ·	DAP 18–46–0 250 kg		18% NH ₄ ; 46% P ₂ O ₅	
		Fertilization	Sulfammo–25– MPPA–1	250 kg	25% N (18% N amoniacal; 7% N nitric); 31% SO ₃ ; 2% MgO	
		Weed control (herbicide)	Principal Plus	440 g	9.2% Nicosulfuron; 55% Dicamba; 2.3% Rimsulfuron	
			Uree	100 kg	CO(NH ₂) ₂	
	Corn for silage	Fertilization	Complex Azomures NPK 20–20–0 vq	- 100 kα		
			Nitrocalcar	150 kg	27% N; 7% CaO; 5% MgO	
	and	for	Henik	1.5 L	40 g/L Nicosulfuron	
	Corn for grain		Mustang	0.6 L	6.25% Florasulfam; 30% Acid 2,4D EHE	
			Adengo	0.4 L	225 g/L Isoxaflutole; 90 g/L Tiencarbazon-methyl; 150 g/L Cyprosulfamide (safener)	
	Alfalfa	Fertilization	Complex 16-16-16	250 kg	16:16:16 N:P:K	
С		Weed control (herbicide)	Corum	1.2 L	480 g/L Bentazon 22.4 g/L Imazamox	
	Triticale	Fertilization	Uree	150 kg	CO(NH ₂) ₂	
		rennization	Nitrocalcar	150 kg	27 % N; 7 % CaO; 5 % MgO	
		Fertilization	Fertilization	Lebosol – Mix Cereale	1.5 L	1.6% Cu – Cu ₂ Cl(OH) ₃ 25 g/L; 11.5% Mn – MnO ₂ 183 g/L; 4.9% Zn – ZnO 78 g/L.
		Weed control (herbicide)	Pixxaro Super	0.3 L	12 g/L Halauxifen-methyl; 280 g/L Fluroxipir mepthyl; 12 g/L Cloquintocet-mexil	
		Fungi control (fungicide)	Orius	0.5 L	250 g/L Tebuconazol	
			Falcon Pro	0.5 L	53 g/L Protioconazol; 224 g/L Spiro-xamină;148 g/L Tebuconazol	
		Insect control (insecticide)	Mospilan	0.15 L	20% Acetamiprid	

Table 4. Chemical treatments applied to vegetable crops

Relevant for the study of pollutants, variable factors for contamination were identified (Figure 3): the presence of free grazing and unconventional water sources in the vicinity of pastures (farm A); intensification of agricultural activities; an important percentage of feed from external sources or use of chemical substances for the care of animals or for shelters (farm B and C).

Given that the modernization of agriculture has led to an increase in chemical treatments applied to crops (Chavoshani et al., 2020) and, taking into account the particularities related to the possibility of accumulation and persistence of various pollutants in the soil, monitoring the potential level of feed pollution aimed how to obtain crop production in terms of treatments applied or crop rotation, highlighting in general as potentially harmful actions the use of natural fertilizer-farm A, dangerous due to the fact that there is no control over their components or the application of various fertilizers on base of N, P, K and various chemical treatments to control weeds or pests (Table 4).

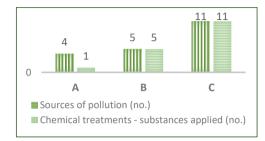


Figure 3. Evaluation of potential polluting level

Following the general characterization and assessment of the analyzed farms, but also following the identification of the main sources of pollution in their vicinity, the farms were grouped according to potential levels of pollution. Given the application of a semiintensive growth system and also the location in an area devoid of important sources of pollution, farm A was considered to have a low potential level of pollution. Regarding farm B, given its position in the vicinity of one of the most polluted cities in the country, but also the location of the main pollution sources from the urban area on the dominant wind direction (NW-SE), the farm was classified as having a medium level of potential pollution.

In contrast to the other two farms, for farm C, the expected pollutant level is not only given by the positioning in the vicinity of the city, but is amplified by the concentration of many industrial factories in the vicinity of the farm, as well as the existence of intense air transport activities, activities in the field of construction or road infrastructure, which means that farm C is considered to have the highest potential level of pollution.

CONCLUSIONS

Following the monitoring of the specific activity of the analyzed farms, focused on the study of feed bases in relation to the assessment of the potential pollution level of feed and milk, it was highlighted that all actions carried out on a farm are relevant in the study of feed pollution and animal production pollution, offering as a whole, the possibility of a continuous assessment of the relationship between the environment, animal husbandry, feed safety and animal production.

The information obtained allowed grouping the studied farms into categories, depending on the expected level of exposure to pollution: L-low level; M-medium level; H-high level.

ACKNOWLEDGEMENTS

The information presented in this paper was obtained with the support of the team from the Faculty of Food and Animal Sciences, University of Life Sciences in Iasi and integrates the application study of the incidence of pollutants in feed and milk, in order to develop the doctoral thesis "Research on the transfer of pollutants from feed to milk" within the same institution.

REFERENCES

- Ahmadkhaniha, R., Nodehi, R.N., Rastkari, N., & Aghamirloo, H.M. (2017). Polychlorinated biphenyls (PCBs) residues in commercial pasteurized cows' milk in Tehran, Iran. *Journal of Environmental Health Science & Engineering*, 15(1), 15.
- Albu, A., Ţârcă, F., Pop, C., & Pop, I.M. (2007). Evaluation of content with lead and cadmium of feeds utilizated in alimentation of a dairy cows. Proceedings of the 6th International Symposiun of Animal Biology and Nutrition, Book of abstracts, Institute of Animal Biology and Nutrition Balotești, 16.
- Aytenfsu, S., Mamo, G., & Kebede, B. (2016). Review on Chemical Residues in Milk and Their Public Health Concern in Ethiopia. *Journal of Nutrition & Food Sciences*, 6(4), 524.
- Bedi, J.S., Gill, J.P.S., Kaur, P., & Aulakh, R.S. (2018). Pesticide residues in milk and their relationship with pesticide contamination of feedstuffs supplied to dairy cattle in Punjab (India). *Journal of Animal and Feed Sciences*, 27, 18–25.
- Chavoshani, A., Hashemi, M., Amin, M.M., & Ameta, S.C. (2020). Risks and challenges of pesticide in aquatic environments. *Elsevier*, 179–213.
- Chen, X., Lin, Y., Dang, K., & Puschner, B. (2017). Quantification of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Commercial Cows' Milk from California by Gas Chromatography–Triple Quadruple Mass Spectrometry. *PLoS ONE*, 12(1), 1–8.
- Desiato, R., Bertolini, S., Baioni, E., Crescio, M.I., Scortichini, G., Ubaldi, A., Sparagna, B., Cuttica, G., & Ru, G. (2014). Data on milk dioxin contamination linked with the location of fodder croplands allow to

hypothesize the origin of the pollution source in an Italian valley. *Science of the Total Environment*, 499, 248–256.

- European Economic Area (EEA) (2017). Cleaner air benefits human health and climate change. *EEA Newsletter*, 4.
- European Food Safety Authority (EFSA), (2005). Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to the presence of non-dioxin-like polychlorinated biphenyls (PCB) in feed and food. The EFSA Journal, 284, 1–137.
- Kulkarni, P. (2019). Dioxins, Encyclopedia of Environmental Health, 2(2), 125–134.
- Lapole, D., Rychen, G., Grova, N., Monteau, F., Le Bizec, B., & Feidt, C. (2007). Milk and urine excretion of polycyclic aromatic hydrocarbons and their hydroxylated metabolites after a single oral administration in ruminants. *Journal of Dairy Science*, 90(6), 2624–2629.
- Manciulea, I., & Dumitrescu, L. (2016). Persistent organic pollutants – Introduction. Learning Toxicology through Open Educational Resources (TOX-OER). Retrieved September 5, 2020, from http://moodle.toxoer.com/pluginfile.php/3555/mod_p age/content/1/POPs Introducere RO.pdf.
- Marin, M.P., Pogurschi, E.N., Marin, I., & Nicolae, C.G. (2020). Influence of natural zeolites supplemented with inorganic selenium on the productive performance of dairy cows. *Pakistan Journal of Zoology*, 52(2), 775-783.
- Miclean, M., Cadar, O., Levei, E.A., Roman, R., Ozunu, A., & Levei, L. (2019). Metal (Pb, Cu, Cd, and Zn) Transfer along Food Chain and Health Risk Assessment through Raw Milk Consumption from Free-Range Cows. *International Journal of Environmental Research and Public Health*, 16(21), 4064.
- Mitchell, A.D. (2007). Impact of Research with Cattle, Pigs, and Sheep on Nutritional Concepts: Body Composition and Growth. *The Journal of Nutrition*, 137(3), 711–714.
- Nica, D.V., Bura, M., Gergen, I., Harmanescu, M., & Bordean, D.M. (2012). Bioaccumulative and

conchological assessment of heavy metal transfer in a soil-plant-snail food chain. *Chemistry Central Journal*, 6(1), 55.

- Piskorska-Pliszczynska, J., Maszewski, S., Mikolajczyk, S., Pajurek, M., Strucinski, P., & Olszowy, M. (2017). Elimination of dioxins in milk by dairy cows after the long-term intake of contaminated sugar beet pellets. *Food Additives & Contaminants*, 34(5), 842– 852.
- Rychen, G., Jurjanz, S., Toussaint, H., & Feidt, C. (2008). Dairy ruminant exposure to persistent organic pollutants and excretion to milk. *The Animal Consortium*, 2(2), 312–323.
- Senthilkumar, K., & Naveen Kumar, M. (2020). Refining Biomass Residues for Sustainable Energy and Bioproducts – Generation of bioenergy from industrial waste using microbial fuel cell technology for the sustainable future. *Technology, Advances, Life Cycle Assessment and Economics*, 183–193.
- Shafy, H., & Mansour, M.S.M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. *Egyptian Journal of Petroleum*, 25(1), 107–123.
- Tahir, M., Iqbal, M., Abbas, M., Tahir, M.A., Nazir, A., Iqbal, D.N., Kanwal, Q., Hassam, F., & Younas, U. (2017). Comparative study of heavy metals distribution in soil, forage, blood and milk. Acta Ecologica Sinica, 37(3), 207–212.
- Tao, S., Liu, W.X., Li, X.Q., Zhou, D.X., Li, X., & Yang, Y.F. (2009). Organochlorine pesticide residuals in chickens and eggs at a poultry farm in Beijing, China. *Environmental Pollution*, 157 (2), 497–502.
- Ukaogo, P.O., Ewuzie, U., & Onwuka, C.V. (2020). Environmental pollution: causes, effects and the remedies. *Microorganisms for Sustainable Environment and Health*, 21, 419–429.
- Wielsoe, M., & Kern, P., & Bonefeld–Jorgensen, E. (2017). Serum levels of environmental pollutants is a risk factor for breast cancer in Inuit: a case control study. *Environmental Health*, 16(1), 56.